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Various types of partitions are a common feature of lifting surfaces. These partitions can 
take the form of stiffening ribs, deflectors for preventing secondary flows or flow separa- 
tion, etc. The presence of partitions has a marked effect on the character of flow and on 
the values of the aerodynamic parameters. Flow past such wings cannot be computed in 
the general case. Wings of a special type are amenable to simple solution, however, and 
this will be considered below, One s ecial case of interaction between a partition and an 
infinite wing is also considered in [l P 

1. Formulation of the problem and construction of the solution. 
Let us consider a triangular conical wing with supersonic leading edges. We assume that 
the portion of the wing adjoining the edges is flat. We shall seek our solution in the co- 
ordinate system r, 9, q shown in Fig. 1. The relationship between our coordinates and 
the Cartesian ones is given be Expressions [2] 

2= rcos 0 sin 8, y = r sin 8, z = r COSW cos e 

The conical flows in terms of these variables are described by the system 

P zpu+v~+_t~+- cos 0 
The first two of these equations constitute projections of the Fuler equations on the r 

and 9 axes. The three latter equations are the energy, entropy, and particle mess conserv- 

ation equations. All of the variables in the equations are dimensionless, and u, v, and W, 

i.e. the velocity components along the r, 6, and q axes, respectively, refer to the velocity 
U at infinity; pis the density referred to the density po of the free stream; p is the pres- 
sure referred to the velocity head p o u 2 ; y is the adiabatic exponent; Ma, is the Mach num- 
ber of the unperturbed stream. We shall solve the problem for the following boundary con- 
ditions. 

I*. The relations 

(1.2) 
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must be fulfilled at the shock wave whose surface equation we denote by 8* (a). 

The quantities with the subscripts n,T1 , andr2 are the projections of the velocity on 

the normal and on the two mutually perpendicular tangents to the surface of the shock 

wave. 

2 O. On the body surface defined by Eq. ff, (q) we have U, = 0. The boundary conditions 
on the flat portion of the wing near the edges are u = 0.0 = 0. Now let us make use of (1.2) 
to express the values of all the required functions at the shock wave in terms of the equa- 

tion of the wave surface. To this end we introduce the three unit vectors eI, q, and C?J 
along the axes r, 8, and qt respectively. In the Cartesian coordinate system shown in 
Fig. 1 these are defined by the followiuq orojections: (1.3) 

q [co9 0 sinqt sin 0, co9 0 cosq], e, [-sin t3 sing, co9 8, -sin e cosgl, es bsq, O,-siwl 

This new basis enables us to determine readily the projections of the unit vectors 
tangent and normal to the surface of the shock wave. 

In fact, in the left-handed system we have 

rl = el (1, 0, 01, ‘cl x n = Z? [O. - (I (1 + q”)“+, - (1 + qr)-“‘] 

n [O, (1 + qs)“‘*, - q (1 + IJ”)+], q=fjp’/cosO* 0.9 

Relations (1.2) to (1.4) enable us to represent the values of the required functions at 
the shock wave as 

U*=COsacOse*coscp-sinasine*, 
Aq+B 

v'= *+(p , 
A-Bq 

UP== 1 +q” 

~,--_~[(sinacos e* +cosctsine* cos(p) -qcosfxshrpl 

IfI+? 
(1.5) 

A=--q(cos8*sina,+sine*cosacoscp)-cosasincp 

B= sin a cos 8. + cos a sin e* cos rp - q cm a sin 9) 

We begin to construct the solution with a study of flow past the flat portion of the wing 
in the neighborhood of the leading edge. Fig. 2 is a diagram of this flow with a plane 
shock OAC attached to the wing edge OAB. The velocities of the free stream and of the 

Fig. 1 Fig. 2 

homogeneous flow behind the shock are represented by the segments OE and 03; the velo- 

city component tangent to the shock is represented by the segment OD. We can readily see 
that all of the plsnes passing through the line OB and intersecting the shock are stream 
surfaces. Hence, the plane CJBC normal to the wing can be considered as an impermeable 
barrier (at which UI = 0). Further, we can assume that the flow in the outer zone between 
the wing and barrier is determined by the uniform flow behind the plane shock. Although 
the flow behind the plane shock has been thoroughly investigated, its application to flow 
past a conical wing enables us to make several remarks of theoretical interest. Let us con- 
sider the velocity triangle OED in Fig. 2. This triangle includes the normal component DB 
of the velocity behind the shock, which is equivalent to the projection of the velocity nor- 
mal to the radius OD. Ftecalling that DB is always smaller than the velocity of sound, we 
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obtain the following inequality at the point D: 

79 -+ w2 < a2 (1.6) 

Here a is the velocity of sound in the stream behind the shock. Let us trace the change 
in the velocity normal to the radius accompanying passage from the point D to the point B. 
According to Fig. 2 it decreases monotonously to zero, so that inequality (1.6) remains 
valid at all points of the segment BD. On the other hand, by the condition of the problem 
the edge 0.4 is supersonic; the velocity component normal to the radius is larger than the 
velocity of sound at the point A. This yields an inequality opposite to (1.6) in the neighbor- 
hood of the point A. Let us write out the equations of the acoustic characteristics of sys- 

tem (1.1). We have 

dB _ 
da,= 

vw*av_v”+w~-ll~ 
Q3- w3 

The change of sign of inequality (1.6) alters system of differential Eqs. (1.1) (e.g. see 
[3]). Thus, the translational stream on the outer portion of the wing in conical variables 
constitutes transonic flow and can be considered as a particular analytic solution of a mixed 
system. In this solution the velocity components n, Y, w (p and p are constants) and the 
sonic line can be determined directly from Expressions 

u=U1cosecos(rp-cp,) 

V== - lJ1 sin 0 sin ((p - cpl), w = - lJ, sin ((p -VI) 

cos e = (1 - Ml-y’ 
cm (cp - cpli 

where U, and M, are the velocity and the Mach number of the homogeneous stream behind 
the shock; al is the coordinate of the point B (Fig. 2). For certain values of the geometric 
parameters and Mach numbers a second parabolic line in the neighborhood of the point C 
arises in addition to the parabolic Iine in the neigh~rhood of the point A. The fact is that 

the Mach cone for a uniform stream behind the shock can intersect the flow zone in two pla- 
ces. It is interesting to note that there are no singularities on the sonic line in this case. 

Let us now attempt to find the solution in the inner zone 
between the partition BC and the plane of symmetry GF 
(Fig. 3). On the lines BC and GF we have the condition 
w = 0, at the shock wave FC conditions (1.2) and (I.%, 
and at the wall GH the condition of streamline flow. Let 
us assume that the solution of the problem can be obtained 
in the class of flows for which w- 8 _ 0 in the entire do- 

/! main CFGH. In this case the unknown functions u, V, p 
and p (in accordance with (1.1)) satisfy the following sys- 
tem of equations: 

Fig. 3 

The second Eq. of (1.1) has been omitted, since it is a consequence of Eqs. (1.7); 8(B) 

is an arbitrary function. The pressure is given by Formula 

The velocity IA can be determined on the basis of system (1.7) from the quasilinear sec- 
ond-order equation 
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Uwl~ - Mn2) - u, tg 0 + 224 (i - ‘/2 M,“) = 0 

Cf.3 

The coefficient Ma is the Mach number in the transverse flow on the sphere r = conat. 

We can show that M,,2 < 1 for sufficiently large Mm. In fact, 

Mm"--_v'"fa l 2 - E(k1-k j q I h), O<k,<i 

If lq] is on the order of unity, then M, < 1; if /q\ is large, then Ma > 1. 
Let us consider the boundary conditions in more detail. The equation w* = O must be 

fulfilled at the shock wave. By virtue of (1.5) this means that A - Bq = 0 and that the sur- 

face of the shock wave can be found by solving the first-order differential Eq. 

uoOQ*z -;- a 0 1Q 
*e f azQv* + a3 = 0, a,, = eba f Er, al=ab(l - 2s) cos e* 

a3 = - [a” (1 - e) - b2 - el] COG 8* 

a3 = - ab co9 8*, a~~O~e*sin~+sinO*~osa~Oscp 

b=cosusincp, s,=Z/(Y+1)M,’ (1.10) 

Equation (1.10) must be solved under the condition that the shock wave passes through 
the point C (q,, 8,*). It is interesting to note that for .Ma, = 0~ Eq. (1.10) breaks down into 

the two simpler equations 

(be,* - a cos 0*) (e,*” eb -j- f&a (i - E) CO9 8* + b GOSS--O*) = O (1.11) 

The first factor cannot be a solution because the symmetry condition 8,*(O) = O is not 
satisfied; the second factor yields two negative roots. The smaller of these roots, i.e. the 

one which corresponds to a Mach number M, < 1 (see (1.9)), is the one required. For the 

second root we have M, > 1, and, as we shall show, no solution exists. 
If the point C is determined by the condition of flow of the translational stream past the 

outer portion of the wing with the attached shock AC, then adjunction of the shock AC with 

the curved shock CF automatically preserves the continuity of the derivative. Thus, the 
shock wave can be determined un~bi~ously from Eq. (1.10) or (1.11) and from the point 

C. By virtue of (1.5) and (1.7) this has the effect of stipuiating that 

u (e*, q) = u*, uB (O*, (P) = v* = B (2.12) 

at the points of the shock wave. 
In relation to Eq. (1.9) these functions constitute boundary conditions which determine 

a unique solution. Hence, the streamline flow condition v = ~8 = 0 is extraneous and can- 
not be satisfied on an arbitrary surface 8, (a). The only remaining alternative is to const- 
ruct the solution of Eq. (1.9) under conditions (1.12) and to determine whether its domain 

of existence includes a surface at whose points uo = 0. If it does, then the shape of the 
inner portion GH of the wing is determined (Fig. 3) and the solution becomes closed, The 
flow at the inner portion of the wing can be of independent interest in the case of ribbed- 
edge wings or of conical channels with flat side walls. The latter occur in the design of 

air intakes. The solution constructed for the class of flows with w m 0 satisfies system 
(1.1) and all the boundary conditions. However, in this class of solutions system (1.1) de- 

generates, and the first three equations are not equivalent to three Euler equations. This 

means that system (1.1) is not complete in some cases. 

2. Investigation of the solution and computed results. Conical flow 

near the wings considered above exists if the Cauchy problem with the appropriate stream- 
line flow condition is solvable for Eqs. (1.9) to (1.11). Investigation of Eq. (1.11) enables 
us to establish that the domain of existence of the solution is defined by the inequality 

(sin a co9 e +, cos cc sin e cos (F)’ - (‘f’ -- 1) co& sin% >, 0 (2.1) 

If the plane shock is attached to the wing edge. tiren this inequality is certainly fulfii- 
led at the point C(g,, 8 t*) of the rib. In fact, it is easy to show that it is fulfilled over 
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the entire range O,< r~ < ~1. On the other hand, if we are considering the inner flow at a 
wing with an arbitrary apex angle q1 and a rib 8 r*, then fulfillment of the inequality at the 
initial point (91*,~,1 once again guarantees the existence of a solution for the shock wave. 
In this case the permissible values of the initial parameters (@t*, Q,, a) are bounded by 
the surface defined by relation (2.1) taken with the equal sign. 

Examples of such domains for several values of the angle D. appear in Fig, 4. The do- 
main of permissible parameters can be determined in a similar way in the case of finite 
Mach numbers. 

Now let us investigate Equation (1.9). 
We begin with the case M, < 1, first rewriting the equation in the form 

- u (2 - JIn?) + U, tg 8 
%JC) = i-iw=” (2.2) 

Proceeding from (2.2) and recalling that the inequalities u > 0 and UQ < 0 are fulfilled in 
the flow domain, we find that ue,g< 0. Let us first consider the stream field in the domain 
adjacent to the rib q = TI. We stipulate that u* (or*, qF,) > 0 and ne* (8,*, a,) < 0 at the 
point of intersection of the rib and shock wave. By virtue of tbe inequality for the second 
derivative the curve of the radial velocity II (8, Cp,) is convex and has a shape like that of 
the lower curve in Fig. 5. In order to determine whether the derivative ue vanishes for some 
value of 8, we shall compare it with the radiaI velocity distribution in the uniform stream 
adjacent to the right side of the rib q = (~1. By virtue of (1.8), the velocity no of the homo- 
geneous stream satisfies Eq. ne,+O= 
inequality laegf > ~u~~~I + On 

- no+ Comparing the latter with (2.2)‘ we obtain the 
tb e other hand, at the initial point (8,*, q,) we have u = uoS 

~0 = a~“; we also know that us’= 0 for f? I 0. This means that the derivative ~0 vanishes 
for 8 > 0. The distribution of the velocity u” of the uniform stream appears as the broken 

curve in Fig. 5. Without going into detail, we note 
that the condition w = 0 is fulfilled for positive 6 
throughout the range O,< a ,< a,. Computations 
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Fig. 4 Fig. 5 

show that the wing contour GH is convex, as is shown in Fig. 3. 
Let us now turn to the ease Mr., > 1 and assume to begin with that 1 < Mo < 2. Eq. (2.2) 

then yields the condition “00 > 0, which impfies an increase in the absolute value of U@ as 
the argument decreases (see the upper curve in Fig. 5). Increases in the derivative )u@I can 
be accompanied by increases in the coefficient nZ, such that beginning with some value of 
6 the quantity M, becomes much Iarger than two. This makes possible a change in the sign 
of ~00 in Formula (2.2) and the appearance of an inflection point in the curve u (8) after 
which \u,yl begins to diminish. It can never reach zero, however, since for M, < 1 we have 
another inflection point and Iael once again increases, etc. Hence, the resulting class of 

conical flows corresponds to flow past the wing only for M, < 1, 

Qualitative anafysis of the velocity distribution at the rib enables us to draw a useful 
conclusion: namely, that according to Fig. 5 the quantities u and s,g on the inner side of 
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the rib are smaller than their respective values on the outer side. This implies that the 
pressure force (see (1.8)) acting on the inner portion HC of the rib (Fig. 3) is larger than 
that acting on the outer portion. Hence, the total forces applied to the ribs produce a thrust 

which reduce the total drag. 
Of the greatest interest in this connection are narrow wings with ribs on their leading 

edges (see the first diagram in Fig. 6). With such an arrangement the pressure on the outer 
side of the rib is much smaller than on the iuner side. The domain of higher pressure cov- 
ers the entire wing, so that the thrust and lift are increased more markedly. 

Fig. 6 

Now let us consider the computed results. The equa- 

tions were integrated by the Runge-Kutta method using 
a standard computer routine. The first step was to solve 

the Cauchy problem for Eq. (1.10) with the data (8,*, 

qt) chosen either arbitrarily or by computing the trans- 

lational streamline flow past the outer portion of the 

wing. The shape 8*(q) of the shock wave and its deriva- 
tive 8,*(q) were determined in the range O< q< q, in 

the course of the computations. The next step was to use 

(1.12) and (1.5) to find the initial conditions for Eq. (1.9) 

which contained q as the parameter. Eq. (1.9) was inte- 
grated in five planes q = qf which divided the interval from 0 to qr into equal parts. The 

functions sought were n (8, qr ) and LI @(@, q, ). Computation was terminated upon the attain- 
ment by the second function of zero to within six places. This procedure enabled us to find 

five points of the wing contour. The pressure coefficient C, = 2p was computed at the wall 

and rib using Formula (1.8). 
The results obtained in computing the contours of the body and shock W8Ve in the trans- 

verse cross section x = I for the Ma, = @J, y = 1.4, u = lo* and for two initial positions of 
the rib (loos 5O) and (So, So) appear in Fig. 7. It is interesting to note for large apex an- 

gles q the body contour is highly curved, while for small 

Fig. 7 

apex angles itis almost straight. Fig. g (broken curves) 
shows the pressure distributions at the wall and rib. Re- 
gardless of the contour curvature, the pressure at the 
wall is almost constant and increases towards the plane 
of symmetry of the wing. At the rib the pressure increa- 
ses slightly towards the point of adjunction with the 
body surface. 

The computed data for a finite Mach number, tWa = 3, 
a = 6*30’(E”10’, 26*36’) appear in Fig. 9. The broken curve represents the pressure dis- 
tribution at the wall. The qualitative behavior of the curves described above remains the 
same in this case. Constant pressure at the wing means that the velocity w is, in fact, 
small, and that our solution is highly accurate. 
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Fig. 8 Fig. 9 

The class of flows characterized by a velocity w N 6 enables us to investigate not only 
past a wing with the transverse cross section shown in Fig. 3. Taken together with the 
translational stream, it can be used to determine the flows near other wings and bodies, e.g. 
near those whose cross sections appear in Fig. 6, 
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3. Hypersonic flow past a wing. Let the Mach number of the free stream be 
large (M, = ~0) and let the density ratio determined by the parameter be E < 1. The coor- 
dinate system r, 8.9 (Fig. 1) in this case can be conveniently related to the surface of 
the body by measuring the angle fi from one of the generatrices of the body, e.g. from the 
value 8 = 8, (q,). Then instead of the coordinate f7 we have the new angle 6 related to the 
former by the expression 8 = 6 + 8t ( a,). If we measure the angle of attack a0 from the 

plane @ = 0, then we must replace ct by the difference (a0 -or) in all expressions. 
In the hypersonic appro~mation, assuming that the wave is sufficiently smooth (narrow 

wings), we have the estimates 

6-e, u-1, D-E, p-i, p - c-1 

From this, retaining only the principal terms in (1.10). we obtain the following equation 
for the shock wave: 

z+ ctg (an - 8,) sin 9 
1 + tg et ctg (a” - 01) CQS cp = 

0 

The two terms in the left-hand side must be of the same order. Rence, q - e”*, and the 
approximation is valid only for sufficiently narrow wings. 

The function 6* (q.) is gfven by the relation 

I?0 = Or* + @! e1 In [ 
I + tg 01 ctg (“” - 01) cos ‘p 

-v-- 1 1+ tg er ctg (80 - t3,) cos rpr_ (Xl) 

Eq. (1.9) and boundary conditions (1.12) can be simplified in the same way. Retaining 
the principal terms, we find that 

U9& -t 2u = 0, U* = cos (a’ - 0,) cos 8, co9 rf - sin (a” - Qsin 0 

ua* = - e [sin (cca - 0,) cos e1 + cos (a” - el) sin Or cos q ] (3.2) 
We can write the soiution as 

u=asin@6+bcos@6, a = U* sin 1’2 6*-+-u*/ fi cos l/2 v”, b = U* cos 1/2 z* 

From this and from the streamline flow condition we find that the wing contour is given 
by Expression 

e sin(ff” 
e,(~p)=6*(q)-T 

- e,) cos Br + cm (a” - 01) sin 81 co.3 rp 
L cos (a* - t3S cos 01 cos q - sin (~9 - 01) sin 81 (3.3) 

The parameter fl t appearing in the above formulas can be determined from the condition 

6 (ccl) = 0. 
ff we assume, moreover, that the wing is slender (8, - E) and measure the angle 6 from 

the plane 19, = 0, then instead of (3.1) we obtain Expressions 

6* = 6r* + ctg a0 (cos q - COS’CI), 191 = ti* - ‘1% E tg tLO / cos ‘t (3.4) 

which indicate that the wing contour is convex. 
Computations carried out using Formulas (3.4) appear as 

parison indicates good agreement with the results computed 
The author is grateful to G.G. Cheruyi and G.N. Andreev 

the present paper. 

broken curves in Fig. 7. Com- 
forM=co. 
for their useful comments on 
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